Home
Search results “Data mining tasks and methods”
data mining techniques
 
14:00
This video describes data mining tasks or techniques in brief. Each technique requires a separate explanation as well. #datamining #techniques #weka Data mining tutorial in hindi Weka tutorial in hindi Data mining tutorial
Views: 4312 yaachana bhawsar
Data Mining, Classification, Clustering, Association Rules, Regression, Deviation
 
05:01
Complete set of Video Lessons and Notes available only at http://www.studyyaar.com/index.php/module/20-data-warehousing-and-mining Data Mining, Classification, Clustering, Association Rules, Sequential Pattern Discovery, Regression, Deviation http://www.studyyaar.com/index.php/module-video/watch/53-data-mining
Views: 85800 StudyYaar.com
Data Science for Business: The 9 Most Common Data Mining Tasks
 
07:56
This video highlights the 9 most common data mining methods used in practice. For a related video, watch "Supervised vs. Unsupervised Methods": https://www.youtube.com/watch?v=i3itDGwhLq4 This video was created by Cognitir. Cognitir is a global company that provides live training courses to business & finance professionals globally to help them acquire in-demand tech skills. For additional free resources and information about training courses, please visit: www.cognitir.com
Views: 2659 Cognitir
Data Mining Classification and Prediction ( in Hindi)
 
05:57
A tutorial about classification and prediction in Data Mining .
Views: 28269 Red Apple Tutorials
Data Preprocessing
 
07:19
Project Name: Learning by Doing (LBD) based course content development Project Investigator: Prof Sandhya Kode
Views: 34143 Vidya-mitra
Data Mining using R | Data Mining Tutorial for Beginners | R Tutorial for Beginners | Edureka
 
36:36
( R Training : https://www.edureka.co/r-for-analytics ) This Edureka R tutorial on "Data Mining using R" will help you understand the core concepts of Data Mining comprehensively. This tutorial will also comprise of a case study using R, where you'll apply data mining operations on a real life data-set and extract information from it. Following are the topics which will be covered in the session: 1. Why Data Mining? 2. What is Data Mining 3. Knowledge Discovery in Database 4. Data Mining Tasks 5. Programming Languages for Data Mining 6. Case study using R Subscribe to our channel to get video updates. Hit the subscribe button above. Check our complete Data Science playlist here: https://goo.gl/60NJJS #LogisticRegression #Datasciencetutorial #Datasciencecourse #datascience How it Works? 1. There will be 30 hours of instructor-led interactive online classes, 40 hours of assignments and 20 hours of project 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. You will get Lifetime Access to the recordings in the LMS. 4. At the end of the training you will have to complete the project based on which we will provide you a Verifiable Certificate! - - - - - - - - - - - - - - About the Course Edureka's Data Science course will cover the whole data life cycle ranging from Data Acquisition and Data Storage using R-Hadoop concepts, Applying modelling through R programming using Machine learning algorithms and illustrate impeccable Data Visualization by leveraging on 'R' capabilities. - - - - - - - - - - - - - - Why Learn Data Science? Data Science training certifies you with ‘in demand’ Big Data Technologies to help you grab the top paying Data Science job title with Big Data skills and expertise in R programming, Machine Learning and Hadoop framework. After the completion of the Data Science course, you should be able to: 1. Gain insight into the 'Roles' played by a Data Scientist 2. Analyse Big Data using R, Hadoop and Machine Learning 3. Understand the Data Analysis Life Cycle 4. Work with different data formats like XML, CSV and SAS, SPSS, etc. 5. Learn tools and techniques for data transformation 6. Understand Data Mining techniques and their implementation 7. Analyse data using machine learning algorithms in R 8. Work with Hadoop Mappers and Reducers to analyze data 9. Implement various Machine Learning Algorithms in Apache Mahout 10. Gain insight into data visualization and optimization techniques 11. Explore the parallel processing feature in R - - - - - - - - - - - - - - Who should go for this course? The course is designed for all those who want to learn machine learning techniques with implementation in R language, and wish to apply these techniques on Big Data. The following professionals can go for this course: 1. Developers aspiring to be a 'Data Scientist' 2. Analytics Managers who are leading a team of analysts 3. SAS/SPSS Professionals looking to gain understanding in Big Data Analytics 4. Business Analysts who want to understand Machine Learning (ML) Techniques 5. Information Architects who want to gain expertise in Predictive Analytics 6. 'R' professionals who want to captivate and analyze Big Data 7. Hadoop Professionals who want to learn R and ML techniques 8. Analysts wanting to understand Data Science methodologies For more information, please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll-free). Website: https://www.edureka.co/data-science Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka Customer Reviews: Gnana Sekhar Vangara, Technology Lead at WellsFargo.com, says, "Edureka Data science course provided me a very good mixture of theoretical and practical training. The training course helped me in all areas that I was previously unclear about, especially concepts like Machine learning and Mahout. The training was very informative and practical. LMS pre recorded sessions and assignmemts were very good as there is a lot of information in them that will help me in my job. The trainer was able to explain difficult to understand subjects in simple terms. Edureka is my teaching GURU now...Thanks EDUREKA and all the best. " Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka
Views: 59613 edureka!
Data Mining Challenges
 
10:02
A Video Presentation by Vibin Dennis.C Though data mining is very powerful, it faces many challenges during its implementation. The challenges could be related to performance, data, methods and techniques used etc. The data mining process becomes successful when the challenges or issues are identified correctly and sorted out properly.
Views: 186 Vibin Dennis
How data mining works
 
12:20
Data mining concepts Data mining is the process of discovering patterns in large data sets involving methods at the intersection of machine learning, statistics, and database systems. Data mining is an interdisciplinary subfield of computer science with an overall goal to extract information (with intelligent methods) from a data set and transform the information into a comprehensible structure for further use.Data mining is the analysis step of the "knowledge discovery in databases" process, or KDD. Aside from the raw analysis step, it also involves database and data management aspects, data pre-processing, model and inference considerations, interestingness metrics, complexity considerations, post-processing of discovered structures, visualization, and online updating. The term "data mining" is in fact a misnomer, because the goal is the extraction of patterns and knowledge from large amounts of data, not the extraction (mining) of data itself. It also is a buzzword and is frequently applied to any form of large-scale data or information processing (collection, extraction, warehousing, analysis, and statistics) as well as any application of computer decision support system, including artificial intelligence (e.g., machine learning) and business intelligence. The book Data mining: Practical machine learning tools and techniques with Java[8] (which covers mostly machine learning material) was originally to be named just Practical machine learning, and the term data mining was only added for marketing reasons.[9] Often the more general terms (large scale) data analysis and analytics – or, when referring to actual methods, artificial intelligence and machine learning – are more appropriate. The actual data mining task is the semi-automatic or automatic analysis of large quantities of data to extract previously unknown, interesting patterns such as groups of data records (cluster analysis), unusual records (anomaly detection), and dependencies (association rule mining, sequential pattern mining). This usually involves using database techniques such as spatial indices. These patterns can then be seen as a kind of summary of the input data, and may be used in further analysis or, for example, in machine learning and predictive analytics. For example, the data mining step might identify multiple groups in the data, which can then be used to obtain more accurate prediction results by a decision support system. Neither the data collection, data preparation, nor result interpretation and reporting is part of the data mining step, but do belong to the overall KDD process as additional steps. The related terms data dredging, data fishing, and data snooping refer to the use of data mining methods to sample parts of a larger population data set that are (or may be) too small for reliable statistical inferences to be made about the validity of any patterns discovered. These methods can, however, be used in creating new hypotheses to test against the larger data populations.Data mining Data mining involves six common classes of tasks: Anomaly detection (outlier/change/deviation detection) – The identification of unusual data records, that might be interesting or data errors that require further investigation. Association rule learning (dependency modelling) – Searches for relationships between variables. For example, a supermarket might gather data on customer purchasing habits. Using association rule learning, the supermarket can determine which products are frequently bought together and use this information for marketing purposes. This is sometimes referred to as market basket analysis. Clustering – is the task of discovering groups and structures in the data that are in some way or another "similar", without using known structures in the data. Classification – is the task of generalizing known structure to apply to new data. For example, an e-mail program might attempt to classify an e-mail as "legitimate" or as "spam". Regression – attempts to find a function which models the data with the least error that is, for estimating the relationships among data or datasets. Summarization – providing a more compact representation of the data set, including visualization and report generation.
Views: 405 Technology mart
Machine Learning - Supervised VS Unsupervised Learning
 
05:04
Enroll in the course for free at: https://bigdatauniversity.com/courses/machine-learning-with-python/ Machine Learning can be an incredibly beneficial tool to uncover hidden insights and predict future trends. This free Machine Learning with Python course will give you all the tools you need to get started with supervised and unsupervised learning. This Machine Learning with Python course dives into the basics of machine learning using an approachable, and well-known, programming language. You'll learn about Supervised vs Unsupervised Learning, look into how Statistical Modeling relates to Machine Learning, and do a comparison of each. Look at real-life examples of Machine learning and how it affects society in ways you may not have guessed! Explore many algorithms and models: Popular algorithms: Classification, Regression, Clustering, and Dimensional Reduction. Popular models: Train/Test Split, Root Mean Squared Error, and Random Forests. Get ready to do more learning than your machine! Connect with Big Data University: https://www.facebook.com/bigdatauniversity https://twitter.com/bigdatau https://www.linkedin.com/groups/4060416/profile ABOUT THIS COURSE •This course is free. •It is self-paced. •It can be taken at any time. •It can be audited as many times as you wish. https://bigdatauniversity.com/courses/machine-learning-with-python/
Views: 73981 Cognitive Class
Prediction of Student Results #Data Mining
 
08:14
We used WEKA datamining s-w which yields the result in a flash.
Views: 30474 GRIETCSEPROJECTS
DATA MINING - DATA PRE PROCESSING
 
02:52
Tugas Mining
Views: 1237 Renaldo Pangihutan
Data Mining & Business Intelligence | Tutorial #4 | Forms Of Data Preprocessing
 
09:49
Order my books at 👉 http://www.tek97.com/ #RanjiRaj #DataMining #DataPreprocessing Its important to preprocess the data before processing. Have a look at different forms of data preprocessing in data mining. Watch now ! Il est important de prétraiter les données avant le traitement. Jetez un oeil à différentes formes de prétraitement des données dans l'exploration de données. Regarde maintenant ! Es ist wichtig, die Daten vor der Verarbeitung vorzuverarbeiten. Sehen Sie sich verschiedene Formen der Datenvorverarbeitung im Data Mining an. Schau jetzt ! Es importante preprocesar los datos antes del procesamiento. Eche un vistazo a las diferentes formas de preprocesamiento de datos en la minería de datos. Ver ahora ! من المهم أن preprocess البيانات قبل المعالجة. إلقاء نظرة على أشكال مختلفة من معالجة البيانات في تعدين البيانات. شاهد الآن ! ⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐ Add me on Facebook 👉https://www.facebook.com/renji.nair.09 Follow me on Twitter👉https://twitter.com/iamRanjiRaj Read my Story👉https://www.linkedin.com/pulse/engineering-my-quadrennial-trek-ranji-raj-nair Visit my Profile👉https://www.linkedin.com/in/reng99/ Like TheStudyBeast on Facebook👉https://www.facebook.com/thestudybeast/ ⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐ For more such videos LIKE SHARE SUBSCRIBE Iphone 6s : http://amzn.to/2eyU8zi Gorilla Pod : http://amzn.to/2gAdVPq White Board : http://amzn.to/2euGJ7F Duster : http://amzn.to/2ev0qvX Feltip Markers : http://amzn.to/2eutbZC
Views: 3669 Ranji Raj
Time Series Data Mining Forecasting with Weka
 
04:31
I am sorry for my poor english. I hope it helps you. when i take the data mining course, i had searched it but i couldnt. So i decided to share this video with you.
Views: 23356 Web Educator
Weka Tutorial 02: Data Preprocessing 101 (Data Preprocessing)
 
10:42
This tutorial demonstrates various preprocessing options in Weka. However, details about data preprocessing will be covered in the upcoming tutorials.
Views: 162648 Rushdi Shams
INTRODUCTION TO DATA MINING IN HINDI
 
15:39
Buy Software engineering books(affiliate): Software Engineering: A Practitioner's Approach by McGraw Hill Education https://amzn.to/2whY4Ke Software Engineering: A Practitioner's Approach by McGraw Hill Education https://amzn.to/2wfEONg Software Engineering: A Practitioner's Approach (India) by McGraw-Hill Higher Education https://amzn.to/2PHiLqY Software Engineering by Pearson Education https://amzn.to/2wi2v7T Software Engineering: Principles and Practices by Oxford https://amzn.to/2PHiUL2 ------------------------------- find relevant notes at-https://viden.io/
Views: 106603 LearnEveryone
DM3 Data Mining Tasks مهام التنقيب عن البيانات
 
04:27
أ.محمود رفيق الفرا مختصر مساق التنقيب عن البيانات Data Mining
Views: 3768 MahmoudRFarra
Difference between Classification and Regression - Georgia Tech - Machine Learning
 
03:29
Watch on Udacity: https://www.udacity.com/course/viewer#!/c-ud262/l-313488098/m-674518790 Check out the full Advanced Operating Systems course for free at: https://www.udacity.com/course/ud262 Georgia Tech online Master's program: https://www.udacity.com/georgia-tech
Views: 71685 Udacity
THE EFFECTIVENESS OF DATA MINING TECHNIQUES IN BANKING
 
00:36
Computer Applications: An International Journal (CAIJ) ISSN :2393 - 8455 http://airccse.com/caij/index.html ********************************************* Computer Applications: An International Journal (CAIJ), Vol.4, No.1/2/3/4, November 2017 DOI:10.5121/caij.2017.4401 THE EFFECTIVENESS OF DATA MINING TECHNIQUES IN BANKING Yuvika Priyadarshini Researcher, Jharkhand Rai University, Ranchi. ABSTRACT The aim of this study is to identify the extent of Data mining activities that are practiced by banks, Data mining is the ability to link structured and unstructured information with the changing rules by which people apply it. It is not a technology, but a solution that applies information technologies. Currently several industries including like banking, finance, retail, insurance, publicity, database marketing, sales predict, etc are Data Mining tools for Customer . Leading banks are using Data Mining tools for customer segmentation and benefit, credit scoring and approval, predicting payment lapse, marketing, detecting illegal transactions, etc. The Banking is realizing that it is possible to gain competitive advantage deploy data mining. This article provides the effectiveness of Data mining technique in organized Banking. It also discusses standard tasks involved in data mining; evaluate various data mining applications in different sectors KEYWORDS Definition of Data Mining and its task, Effectiveness of Data Mining Technique, Application of Data Mining in Banking, Global Banking Industry Trends, Effective Data Mining Component and Capabilities, Data Mining Strategy, Benefit of Data Mining Program in Banking
Views: 41 aircc journal
KDD ( knowledge data discovery )  in data mining in hindi
 
08:50
Take the Full Course of Datawarehouse What we Provide 1)22 Videos (Index is given down) + Update will be Coming Before final exams 2)Hand made Notes with problems for your to practice 3)Strategy to Score Good Marks in DWM To buy the course click here: https://goo.gl/to1yMH or Fill the form we will contact you https://goo.gl/forms/2SO5NAhqFnjOiWvi2 if you have any query email us at [email protected] or [email protected] Index Introduction to Datawarehouse Meta data in 5 mins Datamart in datawarehouse Architecture of datawarehouse how to draw star schema slowflake schema and fact constelation what is Olap operation OLAP vs OLTP decision tree with solved example K mean clustering algorithm Introduction to data mining and architecture Naive bayes classifier Apriori Algorithm Agglomerative clustering algorithmn KDD in data mining ETL process FP TREE Algorithm Decision tree
Views: 65607 Last moment tuitions
Data Preprocessing
 
13:49
About Data Preprocessing and steps of Preprocessing
Views: 7316 Dr.Anamika Bhargava
Data Cleaning Process Steps / Phases [Data Mining] Easiest Explanation Ever (Hindi)
 
04:26
📚📚📚📚📚📚📚📚 GOOD NEWS FOR COMPUTER ENGINEERS INTRODUCING 5 MINUTES ENGINEERING 🎓🎓🎓🎓🎓🎓🎓🎓 SUBJECT :- Artificial Intelligence(AI) Database Management System(DBMS) Software Modeling and Designing(SMD) Software Engineering and Project Planning(SEPM) Data mining and Warehouse(DMW) Data analytics(DA) Mobile Communication(MC) Computer networks(CN) High performance Computing(HPC) Operating system System programming (SPOS) Web technology(WT) Internet of things(IOT) Design and analysis of algorithm(DAA) 💡💡💡💡💡💡💡💡 EACH AND EVERY TOPIC OF EACH AND EVERY SUBJECT (MENTIONED ABOVE) IN COMPUTER ENGINEERING LIFE IS EXPLAINED IN JUST 5 MINUTES. 💡💡💡💡💡💡💡💡 THE EASIEST EXPLANATION EVER ON EVERY ENGINEERING SUBJECT IN JUST 5 MINUTES. 🙏🙏🙏🙏🙏🙏🙏🙏 YOU JUST NEED TO DO 3 MAGICAL THINGS LIKE SHARE & SUBSCRIBE TO MY YOUTUBE CHANNEL 5MINUTES ENGINEERING 📚📚📚📚📚📚📚📚
Views: 8849 5 Minutes Engineering
Data Mining Lecture - - Advance Topic | Web mining | Text mining (Eng-Hindi)
 
05:13
Data mining Advance topics - Web mining - Text Mining -~-~~-~~~-~~-~- Please watch: "PL vs FOL | Artificial Intelligence | (Eng-Hindi) | #3" https://www.youtube.com/watch?v=GS3HKR6CV8E -~-~~-~~~-~~-~- Follow us on : Facebook : https://www.facebook.com/wellacademy/ Instagram : https://instagram.com/well_academy Twitter : https://twitter.com/well_academy
Views: 50637 Well Academy
How to use WEKA software for data mining tasks
 
04:54
In this video, I'll guide you how to use WEKA software for preprocessing, classifying, clustering, association. WEKA is a collection of machine learning algorithms for performing data mining tasks. #RanjiRaj #WEKA #DataMining Follow me on Instagram 👉 https://www.instagram.com/reng_army/ Visit my Profile 👉 https://www.linkedin.com/in/reng99/ Support my work on Patreon 👉 https://www.patreon.com/ranjiraj Get WEKA from here : http://www.cs.waikato.ac.nz/ml/weka/
Views: 16586 Ranji Raj
Classification of Data Mining Problems v1
 
09:18
I will explain 9 common data mining problem types. The information in this presentation is mostly based on the great book called "Data Science for Business" written by Provost and Fawcett. http://datascience.mertnuhoglu.com Please give positive or negative feedback on the presentation. Does it help? What do you suggest to make it better?
Views: 8990 Mert Nuhoglu
What is Data Mining
 
08:10
Data mining (the analysis step of the "Knowledge Discovery in Databases" process, or KDD), an interdisciplinary subfield of computer science, is the computational process of discovering patterns in large data sets involving methods at the intersection of artificial intelligence, machine learning, statistics, and database systems. The overall goal of the data mining process is to extract information from a data set and transform it into an understandable structure for further use. Aside from the raw analysis step, it involves database and data management aspects, data preprocessing, model and inference considerations, interestingness metrics, complexity considerations, post-processing of discovered structures, visualization, and online updating. The term is a buzzword, and is frequently misused to mean any form of large-scale data or information processing (collection, extraction, warehousing, analysis, and statistics) but is also generalized to any kind of computer decision support system, including artificial intelligence, machine learning, and business intelligence. In the proper use of the word, the key term is discovery[citation needed], commonly defined as "detecting something new". Even the popular book "Data mining: Practical machine learning tools and techniques with Java"(which covers mostly machine learning material) was originally to be named just "Practical machine learning", and the term "data mining" was only added for marketing reasons. Often the more general terms "(large scale) data analysis", or "analytics" -- or when referring to actual methods, artificial intelligence and machine learning -- are more appropriate. The actual data mining task is the automatic or semi-automatic analysis of large quantities of data to extract previously unknown interesting patterns such as groups of data records (cluster analysis), unusual records (anomaly detection) and dependencies (association rule mining). This usually involves using database techniques such as spatial indices. These patterns can then be seen as a kind of summary of the input data, and may be used in further analysis or, for example, in machine learning and predictive analytics. For example, the data mining step might identify multiple groups in the data, which can then be used to obtain more accurate prediction results by a decision support system. Neither the data collection, data preparation, nor result interpretation and reporting are part of the data mining step, but do belong to the overall KDD process as additional steps.
Views: 52158 John Paul
Data Profiling using SSIS
 
12:29
Learn how to use the "Data Profiling Task" component in SSIS to perform data profiling, and using "Profile Viewer" to view the report
Views: 9177 DataAcademy.in
Weka Data Mining Tutorial for First Time & Beginner Users
 
23:09
23-minute beginner-friendly introduction to data mining with WEKA. Examples of algorithms to get you started with WEKA: logistic regression, decision tree, neural network and support vector machine. Update 7/20/2018: I put data files in .ARFF here http://pastebin.com/Ea55rc3j and in .CSV here http://pastebin.com/4sG90tTu Sorry uploading the data file took so long...it was on an old laptop.
Views: 442290 Brandon Weinberg
Learning Representations of Large-scale Networks part 1
 
01:43:45
Authors: Qiaozhu Mei, Department of Electrical Engineering and Computer Science, University of Michigan Jian Tang, Montreal Institute for Learning Algorithms (MILA), University of Montreal Abstract: Large-scale networks such as social networks, citation networks, the World Wide Web, and traffic networks are ubiquitous in the real world. Networks can also be constructed from text, time series, behavior logs, and many other types of data. Mining network data attracts increasing attention in academia and industry, covers a variety of applications, and influences the methodology of mining many types of data. A prerequisite to network mining is to find an effective representation of networks, which largely determines the performance of downstream data mining tasks. Traditionally, networks are usually represented as adjacency matrices, which suffer from data sparsity and high-dimensionality. Recently, there is a fast-growing interest in learning continuous and low-dimensional representations of networks. This is a challenging problem for multiple reasons: (1) networks data (nodes and edges) are sparse, discrete, and globally interactive; (2) real-world networks are very large, usually containing millions of nodes and billions of edges; and (3) real-world networks are heterogeneous. Edges can be directed, undirected or weighted, and both nodes and edges may carry different semantics. In this tutorial, we will introduce the recent progress on learning continuous and low-dimensional representations of large-scale networks. This includes methods that learn the embeddings of nodes, methods that learn representations of larger graph structures (e.g., an entire network), and methods that layout very large networks on extremely low (2D or 3D) dimensional spaces. We will introduce methods for learning different types of node representations: representations that can be used as features for node classification, community detection, link prediction, and network visualization. We will introduce end-to-end methods that learn the representation of the entire graph structure through directly optimizing tasks such as information cascade prediction, chemical compound classification, and protein structure classification, using deep neural networks. We will highlight open source implementations of these techniques. Link to tutorial: https://sites.google.com/site/pkujiantang/home/kdd17-tutorial More on http://www.kdd.org/kdd2017/ KDD2017 Conference is published on http://videolectures.net/
Views: 316 KDD2017 video
AN EFFICIENT PREDICTION OF CANCER USING DATA MINING TECHNIQUE
 
11:59
Cancer is one of the major causes of death when compared to all other diseases. Cancer has become the most hazardous types of disease among the living creature in the world. Early detection of cancer is essential in reducing life losses. This work aims to establish an accurate classification model for Cancer prediction, in order to make full use of the invaluable information in clinical data. The dataset is divided into training set and test set. In this experiment, we compare six classification techniques in Weka software and comparison results show that Support Vector Machine (SVM) has higher prediction accuracy than those methods. Different methods for cancer detection are explored and their accuracies are compared. With these results, we infer that the SVM are more suitable in handling the classification problem of cancer prediction, and we recommend the use of these approaches in similar classification problems. This work presents a comparison among the different Data mining classifiers on the database of cancer, by using classification accuracy.
Views: 4446 David Clinton
More Data Mining with Weka (1.3: Comparing classifiers)
 
07:53
More Data Mining with Weka: online course from the University of Waikato Class 1 - Lesson 3: Comparing classifiers http://weka.waikato.ac.nz/ Slides (PDF): http://goo.gl/Le602g https://twitter.com/WekaMOOC http://wekamooc.blogspot.co.nz/ Department of Computer Science University of Waikato New Zealand http://cs.waikato.ac.nz/
Views: 16246 WekaMOOC
What is Data Preprocessing in Data Mining Lecture 2 in Urdu/Hindi
 
07:51
what is data preprocessing?
Views: 4027 Focus Group
Random Forest - Fun and Easy Machine Learning
 
07:38
Random Forest - Fun and Easy Machine Learning ►FREE YOLO GIFT - http://augmentedstartups.info/yolofreegiftsp ►KERAS Course - https://www.udemy.com/machine-learning-fun-and-easy-using-python-and-keras/?couponCode=YOUTUBE_ML Hey Guys, and welcome to another Fun and Easy Machine Learning Algorithm on Random Forests. Random forest algorithm is a one of the most popular and most powerful supervised Machine Learning algorithm in Machine Learning that is capable of performing both regression and classification tasks. As the name suggest, this algorithm creates the forest with a number of decision trees. In general, the more trees in the forest the more robust the prediction. In the same way in the random forest classifier, the higher the number of trees in the forest gives the high accuracy results. To model multiple decision trees to create the forest you are not going to use the same method of constructing the decision with information gain or gini index approach, amongst other algorithms. If you are not aware of the concepts of decision tree classifier, Please check out my lecture here on Decision Tree CART for Machine learning. You will need to know how the decision tree classifier works before you can learn the working nature of the random forest algorithm. ------------------------------------------------------------ Support us on Patreon ►AugmentedStartups.info/Patreon Chat to us on Discord ►AugmentedStartups.info/discord Interact with us on Facebook ►AugmentedStartups.info/Facebook Check my latest work on Instagram ►AugmentedStartups.info/instagram Learn Advanced Tutorials on Udemy ►AugmentedStartups.info/udemy ------------------------------------------------------------ To learn more on Artificial Intelligence, Augmented Reality IoT, Deep Learning FPGAs, Arduinos, PCB Design and Image Processing then check out http://augmentedstartups.info/home Please Like and Subscribe for more videos :)
Views: 180029 Augmented Startups
Spatial Data Mining
 
12:38
Topics Described: 1. Data Mining 2. Spatial Data Mining 3. Spatial Data Mining Architecture 4. Heterogeneity of Data Mining 5. Autocorrelation 6. Relations 7. Future Scopes 8. Summary Done by M.Karthikeyan
Views: 1566 kaka karthi
Extremely Fast Decision Tree Mining for Evolving Data Streams
 
02:03
Extremely Fast Decision Tree Mining for Evolving Data Streams Albert Bifet (Telecom ParisTech) Jiajin Zhang (Noah's Ark Lab, Huawei) Wei Fan (Huawei Noah’s Ark Lab) Cheng He (Noah's Ark Lab, Huawei) Jianfeng Zhang (Noah's Ark Lab, Huawei) Jianfeng Qian (Huawei Noah's Ark Lab) Geoffrey Holmes (University of Waikato) Bernhard Pfahringer (University of Waikato) Nowadays real-time industrial applications are generating a huge amount of data continuously every day. To process these large data streams, we need fast and efficient methodologies and systems. A useful feature desired for data scientists and analysts is to have easy to visualize and understand machine learning models. Decision trees are preferred in many real-time applications for this reason, and also, because combined in an ensemble, they are one of the most powerful methods in machine learning. In this paper, we present a new system called streamDM-C++, that implements decision trees for data streams in C++, and that has been used extensively at Huawei. Streaming decision trees adapt to changes on streams, a huge advantage since standard decision trees are built using a snapshot of data, and can not evolve over time. streamDM-C++ is easy to extend, and contains more powerful ensemble methods, and a more efficient and easy to use adaptive decision tree. We compare our new implementation with VFML, the current state of the art implementation in C, and show how our new system outperforms VFML in speed using less resources. More on http://www.kdd.org/kdd2017/
Views: 523 KDD2017 video
Machine learning with Python and sklearn - Hierarchical Clustering (E-commerce dataset example)
 
09:06
In this Machine Learning & Python video tutorial I demonstrate Hierarchical Clustering method. Hierarchical Clustering is a part of Machine Learning and belongs to Clustering family: - Connectivity-based clustering (hierarchical clustering) - Centroid-based clustering (K-Means Clustering) - https://www.youtube.com/watch?v=iybATqk6LNI - Distribution-based clustering - Density-based clustering In data mining and statistics, Hierarchical Clustering also called hierarchical cluster analysis or HCA is a method of cluster analysis which seeks to build a hierarchy of clusters. In this video I demonstrate how Agglomerative Hierarchical Clustering is working. Must know for Hierarchical Clustering is knowing Dendrograms. Dendrogram helps you to decide the optimal number of clusters for your dataset. For executing task in Python I used: - sklearn library that is for Machine Learning algorithms. - ward method that means Minimum Variance Method. If you are interesting more in Hierarchical Clustering, read my article on LinkedIn where I described my experiment about combining Machine Learning (Hierarchical Clustering) in GIS (Geographical Information System). - https://www.linkedin.com/pulse/machine-learning-gis-hierarchical-clustering-urban-bielinskas Data-set for this example is taken from https://www.kaggle.com. There you can find many dataset for very different Machine Learning tasks. Hierarchicaal Clustering is very usable in solving Data Analysis, Data Mining and Statistics problems. If you have any question or comments please write below. Do not forget to subscribe me if want to follow my new videos about Machine Learning, Data Science, Python programming and relative issues. Follow me on LinkedIn: https://www.linkedin.com/in/bielinskas/
Views: 3002 Vytautas Bielinskas
3 - ETL Tutorial | Extract Transform and Load
 
12:20
This video aims to provide an overview of #ETL (Extract Load Transformation ) process and covers: #extraction Process and its Strategies Transformation and various tasks performed Loading Process and its Strategies ETL tools and its features. ETL Tools: Talend Open Studio, Jaspersoft ETL, Ab initio, Informatica, Datastage, Clover ETL, Pentaho ETL, Kettle ETL Tools Features: Source and Target Data System Connectivity Scalability and Performance Easy Transformation connectors Data Profiling Data Cleaning and Quality Easy integration with Web services Logging and Exception Handling Robust Administration features Efficient Batch and Real time processing For more details visit: http://www.vikramtakkar.com/2015/10/what-is-etl-extract-transformation-and.html Datawarehouse Playlist: https://www.youtube.com/playlist?list=PLJ4bGndMaa8FV7nrvKXeHCLRMmIXVCyOG
Views: 102786 Vikram Takkar
Mass-based dissimilarity (KDD2016 presentation)
 
23:49
The distance calculation is the core process that has been applied to all aspects of data mining tasks, including density estimation, clustering, anomaly detection and classification. Despite its widespread applications, research in psychology has pointed out since 1970‘s that distance measures do not possess the key property of dissimilarity as judged by humans, i.e., the characteristic where two instances in a dense region are less similar to each other than two instances of the same interpoint distance in a sparse region. This project introduces the first generic version of data dependent dissimilarity and shows that it provides a better closest match than distance measures for three existing algorithms in clustering, anomaly detection and multi-label classification. For each algorithm, we show that simply replacing the distance measure with a data-dependent dissimilarity measure, overcomes a key weakness of the otherwise unchanged algorithm. This video is the record of the corresponding paper presented in ACM SIGKDD 2016 Conference on Knowledge Discovery & Data Mining: Overcoming Key Weaknesses of Distance-based Neighbourhood Methods using a Data Dependent Dissimilarity Measure. For more details about this new dissimilarity measure, please refer the original paper at: http://dx.doi.org/10.1145/2939672.2939779 The relevant source code and slides are published on: https://sourceforge.net/projects/mass-based-dissimilarity/
Views: 161 yale
Classification and Prediction
 
11:02
Definitions,Comparison,Issues
Views: 10534 Dr.Anamika Bhargava
TRAJREF - Trajectory mining group in Instituto Federal Catarinense
 
06:33
TRAJREF - A Method for Identifying Patterns of Movement of Trajectory Sets by Using the Frequency Distribution of Points Video presentation for GeoProcessing 2017, on the TRAJDATA track.
Views: 71 Vanessa Rolim
Piotr Borkowski - Semantic methods of categorization in the tasks of text document analysis
 
52:46
In my PhD thesis entitled ``Semantic methods of categorization in the tasks of text document analysis'', a new algorithm of semantic categorization of documents was proposed and examined. On its basis, a new algorithm for category aggregation was developed, a family of semantic algorithms of classifiers, as well as a heterogeneous classifier committee (which combines the algorithm of semantic categorization and previously known classifiers). In my talk I will briefly present their concepts and the results of their effectiveness studies.
Views: 66 IPI PAN
KDD2016 paper 446
 
03:02
Title: FINAL: Fast Attributed Network Alignment Authors: Si Zhang*, Arizona State University Hanghang Tong, Arizona State University Abstract: Multiple networks naturally appear in numerous high-impact applications. Network alignment (i.e., finding the node correspondence across different networks) is often the very first step for many data mining tasks. Most, if not all, of the existing alignment methods are solely based on the topology of the underlying networks. Nonetheless, many real networks often have rich attribute information on nodes and/or edges. In this paper, we propose a family of algorithms FINAL to align attributed networks. The key idea is to leverage the node/edge attribute information to guide (topology-based) alignment process. We formulate this problem from optimization perspective based on the alignment consistency principle, and develop effective and scalable algorithms to solve it. Our experiments on real networks show that (1) by leveraging the attribute information, our algorithms can significantly improve the alignment accuracy (i.e., up to a 30% improvement over the existing methods); (2) compared with the exact solution, our proposed fast alignment algorithm leads to a more than 10 times speed-up, while preserving a 95% accuracy; and (3) our on-query alignment method scales linearly, with an around 90% ranking accuracy compared with our exact full alignment method and near real-time response time. More on http://www.kdd.org/kdd2016/ KDD2016 Conference will be recorded and published on http://videolectures.net/
Views: 299 KDD2016 video
Data Science - Part VIII -  Artifical Neural Network
 
50:04
For downloadable versions of these lectures, please go to the following link: http://www.slideshare.net/DerekKane/presentations https://github.com/DerekKane/YouTube-Tutorials This lecture provides an overview of biological based learning in the brain and how to simulate this approach through the use of feed-forward artificial neural networks with back propagation. We will go through some methods of calibration and diagnostics and then apply the technique on three different data mining tasks: binary prediction, classification, and time series prediction.
Views: 12509 Derek Kane
Semi-supervised Clustering: Probabilistic Models, Algorithms and Experiments
 
01:20:13
Clustering is one of the most common data mining tasks, used frequently for data categorization and analysis in both industry and academia. The focus of our research is on semi-supervised clustering, where we study how prior knowledge can be incorporated into clustering algorithms. We present probabilistic models for semi-supervised clustering, develop algorithms based on these models and empirically validate their performances by extensive experiments on datasets from different domains (e.g., text and web data, hand-written character recognition, and bioinformatics). In many domains where clustering is applied, prior knowledge is naturally available in the form of constraints on some of the instances, specifying whether two instances should be in same or different clusters. We focus in particular on the problem of semi-supervised clustering with constraints. We show that this problem has a well-defined underlying probabilistic model of a Hidden Markov Random Field, and we give convergence guarantees of our algorithm for a large class of clustering distortion measures (e.g., squared Euclidean metric, KL divergence, and cosine distance). We propose an active learning algorithm for acquiring maximally informative pairwise constraints in an interactive query-driven framework, which to our knowledge is the first active learning algorithm for constrained semi-supervised clustering. Apart from constrained clustering, we will also discuss other interesting problems of semi-supervised clustering in this talk (e.g., using prior knowledge in the form of category labels on data instances during clustering, incorporating prior knowledge into overlapping clustering of data, semi-supervised graph partitioning using a kernel approach).
Views: 750 Microsoft Research
Weather Predication Using  Data Mining
 
01:49
username:Harson Password: Harson http://weather.parchaar.com Algorithm: Sliding Window Algorithm
Views: 1009 Harson suwal
DATA MINING Breast Cancer  #DataMining_FSKTM_UPM
 
05:18
tutorial on several techniques is applied in data mining. #DataMining_FSKTM_UPM
Views: 1549 farhana yusuf
Final Year Projects 2015 | Automated web usage data mining and recommendation system
 
08:26
Including Packages ===================== * Complete Source Code * Complete Documentation * Complete Presentation Slides * Flow Diagram * Database File * Screenshots * Execution Procedure * Readme File * Addons * Video Tutorials * Supporting Softwares Specialization ======================= * 24/7 Support * Ticketing System * Voice Conference * Video On Demand * * Remote Connectivity * * Code Customization ** * Document Customization ** * Live Chat Support * Toll Free Support * Call Us:+91 967-774-8277, +91 967-775-1577, +91 958-553-3547 Shop Now @ http://clickmyproject.com Get Discount @ https://goo.gl/lGybbe Chat Now @ http://goo.gl/snglrO Visit Our Channel: http://www.youtube.com/clickmyproject Mail Us: [email protected]
Views: 3214 Clickmyproject
Multitask TSK Fuzzy System Modeling by Mining Inter task Common Hidden Structure
 
02:56
In order to improve the classical single task TSK fuzzy system modeling methods with multitask learning ability. The multi-task learning or learning multiple related tasks simultaneously has better performance than learning these tasks independently. One can build an individual fuzzy system for each dataset from each task,due to this intertask hidden correlation information has been ignored,hence generalization performance yet not improved. Multi-task learning has advantage over machine learning, data mining and pattern recognition
Graph Clustering Algorithms (September 28, 2017)
 
01:11:54
Tselil Schramm (Simons Institute, UC Berkeley) One of the greatest advantages of representing data with graphs is access to generic algorithms for analytic tasks, such as clustering. In this talk I will describe some popular graph clustering algorithms, and explain why they are well-motivated from a theoretical perspective. ------------------- References from the Whiteboard: Ng, Andrew Y., Michael I. Jordan, and Yair Weiss. "On spectral clustering: Analysis and an algorithm." Advances in neural information processing systems. 2002. Lee, James R., Shayan Oveis Gharan, and Luca Trevisan. "Multiway spectral partitioning and higher-order cheeger inequalities." Journal of the ACM (JACM) 61.6 (2014): 37. ------------------- Additional Resources: In my explanation of the spectral embedding I roughly follow the exposition from the lectures of Dan Spielman (http://www.cs.yale.edu/homes/spielman/561/), focusing on the content in lecture 2. Lecture 1 also contains some additional striking examples of graphs and their spectral embeddings. I also make some imprecise statements about the relationship between the spectral embedding and the minimum-energy configurations of a mass-spring system. The connection is discussed more precisely here (https://www.simonsfoundation.org/2012/04/24/network-solutions/). License: CC BY-NC-SA 4.0 - https://creativecommons.org/licenses/by-nc-sa/4.0/

Trental 400 mg tabletennis11
Prix aprovel 150 mg
Trazodone hydrochloride 50 mg insomnia quotes
Lysox 400 mg posologie augmentin
Buycheap generic drugs india