Home
Search results “Atoms formed by covalent bonds”
Covalent Bonding | #aumsum
 
06:11
Covalent Bonding. Noble gases have complete outer electron shells, which make them stable. The coming together and sharing of electron pairs leads to the formation of a chemical bond known as a covalent bond. Two chlorine atoms come together and share their electrons to form a molecule of chlorine. In this way, each atom will have eight electrons in its valence shell. As a single pair of electrons is shared between them, the bond is known as a single covalent bond. A single covalent bond is represented by a single dash between the atoms. When two oxygen atoms come together, they each share 2 electrons to complete their octets. Since they share two pairs of electrons, there is a double bond between the oxygen atoms. Similarly, Nitrogen atoms share a triple covalent bond to form a molecule of Nitrogen.
Views: 1432281 It's AumSum Time
Covalent Bonding
 
07:01
019 - Covalent Bonding In this video Paul Andersen explains how covalent bonds form between atoms that are sharing electrons. Atoms that have the same electronegativity create nonpolar covalent bonds. The bond energy and bond length can be determined by graphing the potential energy versus the distance between atoms. Atoms that share electrons unequally form nonpolar covalent bonds. Music Attribution Title: String Theory Artist: Herman Jolly http://sunsetvalley.bandcamp.com/track/string-theory All of the images are licensed under creative commons and public domain licensing: "Electronegativities of the Elements (data Page)." Wikipedia, the Free Encyclopedia, August 10, 2013. http://en.wikipedia.org/w/index.php?title=Electronegativities_of_the_elements_(data_page)&oldid=565034286. "File:Covalent Bond Hydrogen.svg." Wikipedia, the Free Encyclopedia. Accessed August 12, 2013. http://en.wikipedia.org/wiki/File:Covalent_bond_hydrogen.svg. "File:Halit-Kristalle.jpg." Wikipedia, the Free Encyclopedia. Accessed August 12, 2013. http://en.wikipedia.org/wiki/File:Halit-Kristalle.jpg. "File:Hydrogen-chloride-3D-vdW.png." Wikipedia, the Free Encyclopedia. Accessed August 12, 2013. http://en.wikipedia.org/wiki/File:Hydrogen-chloride-3D-vdW.png. "File:Magnesium Crystals.jpg." Wikipedia, the Free Encyclopedia. Accessed August 12, 2013. http://en.wikipedia.org/wiki/File:Magnesium_crystals.jpg. "File:Methane-3D-space-filling.svg." Wikipedia, the Free Encyclopedia. Accessed August 12, 2013. http://en.wikipedia.org/wiki/File:Methane-3D-space-filling.svg. "File:Nitrogen-3D-vdW.png." Wikipedia, the Free Encyclopedia. Accessed August 12, 2013. http://en.wikipedia.org/wiki/File:Nitrogen-3D-vdW.png. "File:Oxygen Molecule.png." Wikipedia, the Free Encyclopedia. Accessed August 12, 2013. http://en.wikipedia.org/wiki/File:Oxygen_molecule.png. "File:Periodic Trends.svg." Wikipedia, the Free Encyclopedia. Accessed August 12, 2013. http://en.wikipedia.org/wiki/File:Periodic_trends.svg. "File:Periodic Trends.svg." Wikipedia, the Free Encyclopedia. Accessed August 12, 2013. http://en.wikipedia.org/wiki/File:Periodic_trends.svg. "File:Sugar 2xmacro.jpg." Wikipedia, the Free Encyclopedia. Accessed August 12, 2013. http://en.wikipedia.org/wiki/File:Sugar_2xmacro.jpg.
Views: 197106 Bozeman Science
Ionic and covalent bonding animation
 
01:58
Ionic bonding formed when one atom has sufficient strength of attraction to remove ion from the other atom. Covalent bonding occurs when neither atom has sufficient strength to remove the other atom's electron. They would instead share electrons to form stable configurations of electrons.
Views: 1243576 kosasihiskandarsjah
Chemical Bonding Introduction: Hydrogen Molecule, Covalent Bond & Noble Gases
 
07:21
Chemical bonding introduction video shows how covalent bond means 2 hydrogen atoms can stick together to form a hydrogen molecule, H2. The video also explains why helium cannot form bonds and hence is called a noble gas. Subscribe to watch more online chemistry courses & science videos: http://www.youtube.com/channel/UCiX8pAYWBppIbtUZTfGnRJw?sub_confirmation=1 About Atomic School: Atomic School supports the teaching of Atomic Theory to primary school & science students . We provide lesson plans, hands-on classroom resources, demonstration equipment, quizzes and a Teacher's Manual to primary school teachers. Animated videos that clearly explain the scientific ideas supports learning by both teachers and students. As a teacher, you don't have to look anywhere else to implement this program. Our work has been verified by science education researchers at the University of Southern Queensland, Dr Jenny Donovan and Dr Carole Haeusler, who confirm that primary students are capable of learning much more complex scientific concepts than previously thought, and crucially, that they love it. Students run to class! The program has been trialed in Australian schools as well as schools in the Philippines, Iran and India. It is conducted as holiday workshops at the Australian Nuclear Science and Technology Organisation, the Queensland Museum as well as the World Science Festival. It has attracted wide media interest, including TV, radio and print, and the research data has been presented at prestigious American Education Research Association and Australian Science Education Research Association conferences. Atomic Theory underlies all the other sciences- genetics, electronics, nanotechnology, engineering and astronomy- so an early understanding will set them up for a more successful learning sequence for all their science subjects, and support their mastery of mathematics as well. We also have extension programs that cover Biology, Physics and Astronomy to an equal depth. About Ian Stuart (Email: [email protected]): The founder of Atomic School, Ian Stuart, taught Chemistry and Physics for 25 years at senior levels before he realized that his 8-year old son, Tom, could understand Atomic Theory at a much deeper level than he expected. After visiting Tom's class at school, he discovered that his peers could also grasp the abstract scientific concepts, as well as apply it usefully to the real world. Ian then developed a program to teach the advanced concepts of high school Chemistry, Physics and Biology to students 10 years younger than they normally would. He found that this engaged their interest in modern science early, and sustained it through to high school and beyond. It also sets them up for future success in their academic and career paths. Ian has a Bachelor's Degree in Chemistry from the University of Queensland and a Master's degree in Electrochemistry from the University of Melbourne. Connect with Atomic School on social media: http://facebook.com/AtomicSchool http://twitter.com/AtomicSchools http://instagram.com/AtomicSchools Video transcript: Let's do a thought experiment. Imagine a box filled with hydrogen atoms. Like billiard balls on a pool table, atoms actually move, and they do it in straight lines until they hit something … like another hydrogen atom. Oh! See that? They stuck together. They’re not separate hydrogen atoms any more, but a pair of hydrogen atoms moving together. There goes another pair. 4.1 When atoms join up like this, scientists call it a molecule. And they call the join between them a chemical bond. Here comes another hydrogen atom crashing into the hydrogen molecule. But this time it doesn’t stick. Instead it just bounces off. Hydrogen atoms bond once, and that’s it. They’re just like that. Pretty quickly all the hydrogen atoms will collide and pair off into molecules. They will keep hitting each other, but they'll just bounce off. Scientists like to have a shorthand way of writing this molecule thingi. Here’s one way to show it, with the hydrogen symbols joined by a stick to show the chemical bond between the atoms. Another way is to write H2, with the little 2 after the H and a bit lower. A number written this way is called a subscript. What do you think the 2 stands for? It counts the number of hydrogen atoms in the molecule. Easy, heh! So when we have a balloon filled with hydrogen gas, it really contains trillions of trillions of H2 molecules. Let's do another thought experiment. We'll go back to our box filled with hydrogen atoms, but this time put an oxygen atom in there too. When a hydrogen atom crashes into an oxygen atom, they stick together. But wait, when another hydrogen atom hits, it also sticks to the oxygen. What about a third hydrogen atom? No, that’s if for oxygen. It can only make 2 bonds and then it’s done.
Views: 139951 AtomicSchool
Atomic Hook-Ups - Types of Chemical Bonds: Crash Course Chemistry #22
 
09:46
Atoms are a lot like us - we call their relationships "bonds," and there are many different types. Each kind of atomic relationship requires a different type of energy, but they all do best when they settle into the lowest stress situation possible. The nature of the bond between atoms is related to the distance between them and, like people, it also depends on how positive or negative they are. Unlike with human relationships, we can analyze exactly what makes chemical relationships work, and that's what this episode is all about. If you are paying attention, you will learn that chemical bonds form in order to minimize the energy difference between two atoms or ions; that those chemical bonds may be covalent if atoms share electrons, and that covalent bonds can share those electrons evenly or unevenly; that bonds can also be ionic if the electrons are transferred instead of shared: and how to calculate the energy transferred in an ionic bond using Coulomb's Law. -- Table of Contents Bonds Minimize Energy 01:38 Covalent Bonds 03:18 Ionic Bonds 05:37 Coulomb's Law 05:51 -- Want to find Crash Course elsewhere on the internet? Facebook - http://www.facebook.com/YouTubeCrashCourse Twitter - http://www.twitter.com/TheCrashCourse Tumblr - http://thecrashcourse.tumblr.com Support CrashCourse on Subbable: http://subbable.com/crashcourse
Views: 1780511 CrashCourse
How Covalent Bonds Form
 
06:41
A description of how carbon and hydrogen share electrons to form a covalently bonded compound.
Views: 11852 BioBunn
How atoms bond - George Zaidan and Charles Morton
 
03:34
View full lesson: http://ed.ted.com/lessons/how-atoms-bond-george-zaidan-and-charles-morton Atoms can (and do) bond constantly; it's how they form molecules. Sometimes, in an atomic tug-of-war, one atom pulls electrons from another, forming an ionic bond. Atoms can also play nicely and share electrons in a covalent bond. From simple oxygen to complex human chromosome 13, George Zaidan and Charles Morton break down the humble chemical bond. Lesson by George Zaidan and Charles Morton, animation by Bevan Lynch.
Views: 417131 TED-Ed
What are Covalent Bonds? - CBSE 10
 
05:48
Carbon is very verastile. It can readily form Bonds with several other elements. But what helps it form so many bonds? How is it capable of Bond Formation with so many elements? Watch this video to understand the Bond formation strategies of Carbon. To access all videos related to Chemistry of Carbon compounds for free, visit our website here: https://DontMemorise.com/course/index.php?categoryid=54 Don’t Memorise brings learning to life through its captivating FREE educational videos. To Know More, visit https://DontMemorise.com New videos every week. To stay updated, subscribe to our YouTube channel : http://bit.ly/DontMemoriseYouTube Register on our website to gain access to all videos and quizzes: http://bit.ly/DontMemoriseRegister Subscribe to our Newsletter: http://bit.ly/DontMemoriseNewsLetter Join us on Facebook: http://bit.ly/DontMemoriseFacebook Follow us on Twitter: https://twitter.com/dontmemorise Follow us : http://bit.ly/DontMemoriseBlog
Views: 27207 Don't Memorise
GCSE Science Chemistry (9-1) Covalent bonding 1
 
04:59
Find my revision workbooks here: https://www.freesciencelessons.co.uk/workbooks/shop/ This video is for the new GCSE specifications (levels 1-9) for all exam boards. In this video, we start looking at covalent bonding. We look at how the atoms are covalently bonded in a hydrogen molecule, a chlorine molecule and in a molecule of hydrogen chloride.
Views: 201497 Freesciencelessons
Covalent Bonding
 
02:09
Follow us at: https://plus.google.com/+tutorvista/ Check us out at http://chemistry.tutorvista.com/physical-chemistry/covalent-bonding.html What is Covalent Bonding A covalent bond is a form of chemical bonding that is characterized by the sharing of pairs of electrons between atoms, and other covalent bonds. In short, the attraction-to-repulsion stability that forms between atoms when they share electrons is known as covalent bonding. Covalent bonding includes many kinds of interaction, including σ-bonding, π-bonding, metal to metal bonding, agostic interactions, and three-center two-electron bonds. The term covalent bond dates from 1939.The prefix co- means jointly, associated in action, partnered to a lesser degree, etc.; thus a "co-valent bond", essentially, means that the atoms share "valence", such as is discussed in valence bond theory. In the molecule H2, the hydrogen atoms share the two electrons via covalent bonding. Covalency is greatest between atoms of similar electronegativities. Thus, covalent bonding does not necessarily require the two atoms be of the same elements, only that they be of comparable electronegativity. Although covalent bonding entails sharing of electrons, it is not necessarily delocalized. Furthermore, in contrast to electrostatic interactions ("ionic bonds") the strength of covalent bond depends on the angular relation between atoms in polyatomic molecules. Covalent bonds are affected by the electronegativity of the connected atoms. Two atoms with equal electronegativity will make non-polar covalent bonds such as H-H. An unequal relationship creates a polar covalent bond such as with Cl-H. Please like our facebook page http://www.facebook.com/tutorvista
Views: 59930 TutorVista
Covalent vs. Ionic bonds
 
12:23
This quick video explains: 1) How to determine the number of protons, neutrons, and electrons that an atom will comtain. 2) The characteristics of covalent bonds 3) The characteristics of ionic bonds Teachers: You can purchase this PowerPoint from my online store for only $3. The link below will take you to the store. https://www.teacherspayteachers.com/Product/Covalent-vs-Ionic-Bonds-PowerPoint-2340207 - Atom - Element - Proton - Neutron - Electron - Atomic number - Atomic mass - Covalent - Ionic - O2 - Salt - Sodium chloride
Views: 407554 Beverly Biology
Chemical Bonding - Ionic vs. Covalent Bonds
 
02:15
This two minute animation describes the Octet Rule and explains the difference between ionic and covalent bonds. Find more free tutorials, videos and readings for the science classroom at ricochetscience.com
Views: 267173 RicochetScience
How Does Water Bond - Covalent Bonds | Chemistry for All | FuseSchool
 
02:40
Learn the basics about the covalent bonding of water, when learning about covalent bonding within properties of matter. Water is made from one oxygen atom and two hydrogens. The oxygen has 6 electrons in its outer shell, but it really wants to have 8 to have a full shell. The hydrogens have one outer shell electron, but want to have two. The atoms share their electrons, forming covalent bonds. So all three atoms have full outer shells, and create a water molecule. Water has two covalent bonds. In water, the bonding electrons spend most of their time nearer the oxygen atom, because it is more ELECTRONEGATIVE. This means that it is electron withdrawing. As the negatively charged electrons are nearer the oxygen atom, the oxygen atom becomes a little bit negative itself, while the hydrogens become a little positive. This is called delta positive and delta negative. Water doesn’t just have any old covalent bonds; it has what we call POLAR COVALENT bonds and is a POLAR molecule. This is really important as it affects how water behaves and reacts with other elements. SUBSCRIBE to the Fuse School YouTube channel for many more educational videos. Our teachers and animators come together to make fun & easy-to-understand videos in Chemistry, Biology, Physics, Maths & ICT. JOIN our platform at www.fuseschool.org This video is part of 'Chemistry for All' - a Chemistry Education project by our Charity Fuse Foundation - the organisation behind The Fuse School. These videos can be used in a flipped classroom model or as a revision aid. Find our other Chemistry videos here: https://www.youtube.com/playlist?list=PLW0gavSzhMlReKGMVfUt6YuNQsO0bqSMV Twitter: https://twitter.com/fuseSchool Access a deeper Learning Experience in the Fuse School platform and app: www.fuseschool.org Follow us: http://www.youtube.com/fuseschool Friend us: http://www.facebook.com/fuseschool This Open Educational Resource is free of charge, under a Creative Commons License: Attribution-NonCommercial CC BY-NC ( View License Deed: http://creativecommons.org/licenses/by-nc/4.0/ ). You are allowed to download the video for nonprofit, educational use. If you would like to modify the video, please contact us: [email protected]
Naming Covalent Molecular Compounds
 
10:46
We'll learn how to write names for compounds that are made of two nonmetals, sometimes called binary compounds. Binary compounds made of two nonmetals are called covalent or molecular because the elements are held together with covalent bonds, and they make molecules. In order to name them, we use the element name for the first element in the chemical formula, and then we use the -ide name for the second name in the chemical formula. Greek prefixes to show the number of atoms of each element, and these are put in front of the element names.
Views: 723185 Tyler DeWitt
Ionic, covalent, and metallic bonds | Chemical bonds | Chemistry | Khan Academy
 
13:22
Introduction to ionic, covalent, polar covalent and metallic bonds. Watch the next lesson: https://www.khanacademy.org/science/chemistry/chemical-bonds/types-chemical-bonds/v/electronegativity-trends?utm_source=YT&utm_medium=Desc&utm_campaign=chemistry Missed the previous lesson? https://www.khanacademy.org/science/chemistry/periodic-table/periodic-table-trends-bonding/v/metallic-nature-trends?utm_source=YT&utm_medium=Desc&utm_campaign=chemistry Chemistry on Khan Academy: Did you know that everything is made out of chemicals? Chemistry is the study of matter: its composition, properties, and reactivity. This material roughly covers a first-year high school or college course, and a good understanding of algebra is helpful. About Khan Academy: Khan Academy is a nonprofit with a mission to provide a free, world-class education for anyone, anywhere. We believe learners of all ages should have unlimited access to free educational content they can master at their own pace. We use intelligent software, deep data analytics and intuitive user interfaces to help students and teachers around the world. Our resources cover preschool through early college education, including math, biology, chemistry, physics, economics, finance, history, grammar and more. We offer free personalized SAT test prep in partnership with the test developer, the College Board. Khan Academy has been translated into dozens of languages, and 100 million people use our platform worldwide every year. For more information, visit www.khanacademy.org, join us on Facebook or follow us on Twitter at @khanacademy. And remember, you can learn anything. For free. For everyone. Forever. #YouCanLearnAnything Subscribe to Khan Academy’s Chemistry channel: https://www.youtube.com/channel/UCyEot66LrwWFEMONvrIBh3A?sub_confirmation=1 Subscribe to Khan Academy: https://www.youtube.com/subscription_center?add_user=khanacademy
Views: 2334517 Khan Academy
Covalent Bonding of Hydrogen, Oxygen & Nitrogen | Chemistry for All | The Fuse School
 
03:25
Learn the basics about the covalent bonding of hydrogen, oxygen and nitrogen as a part of the overall topic of properties of matter. The noble gas structure and covalent bonding is also discussed. SUBSCRIBE to the Fuse School YouTube channel for many more educational videos. Our teachers and animators come together to make fun & easy-to-understand videos in Chemistry, Biology, Physics, Maths & ICT. JOIN our platform at www.fuseschool.org This video is part of 'Chemistry for All' - a Chemistry Education project by our Charity Fuse Foundation - the organisation behind The Fuse School. These videos can be used in a flipped classroom model or as a revision aid. Find our other Chemistry videos here: https://www.youtube.com/playlist?list=PLW0gavSzhMlReKGMVfUt6YuNQsO0bqSMV Twitter: https://twitter.com/fuseSchool Access a deeper Learning Experience in the Fuse School platform and app: www.fuseschool.org Follow us: http://www.youtube.com/fuseschool Friend us: http://www.facebook.com/fuseschool This Open Educational Resource is free of charge, under a Creative Commons License: Attribution-NonCommercial CC BY-NC ( View License Deed: http://creativecommons.org/licenses/by-nc/4.0/ ). You are allowed to download the video for nonprofit, educational use. If you would like to modify the video, please contact us: [email protected]
What Are Covalent Bonds | Chemistry for All | FuseSchool
 
05:53
Learn the basics about covalent bonds, when learning about properties of matter. When similar atoms react, like non-metals combining with other non-metals, they share electrons. This is covalent bonding. Non-metals have shells of electrons that are normally half or more than half full of electrons. Since they have a strong attraction for a few additional electrons, it is energetically unfavourable for any of them to lose electrons, so they share electrons by overlapping orbitals. This makes a bonding orbital, or covalent bond, that contains two or more electrons. Covalent bonds can be represented by a dot and cross diagram. These diagrams show only the valence electrons. Covalent bonds are directional, which means they are in a fixed position. The overlap between orbitals mean that the atoms in covalent bonds are very close, and make covalent bonds strong. There are two kinds of covalent structure - small molecules, like water, and giant compounds, like diamond. The electrons in the bonds are evenly shared, which means the bonds are not polarised; there is little attraction between molecules, and forces between molecules are weak. Compounds made from small covalent molecules have low melting and boiling points and are volatile. They also don’t conduct electricity. Carbon and silicon tend to form giant covalent compounds. These bond in the same way, but instead of forming small molecules with one or two bonds, they form four, make up huge lattices or chains of many many linked up atoms. Diamond is a common example, and is made up of Carbon. These compounds have very high melting and boiling points because you have to break covalent bonds rather than intermolecular forces to make them free enough to act like liquids or gases. The covalent bonds hold them rigidly in place in the giant lattice. SUBSCRIBE to the Fuse School YouTube channel for many more educational videos. Our teachers and animators come together to make fun & easy-to-understand videos in Chemistry, Biology, Physics, Maths & ICT. JOIN our platform at www.fuseschool.org This video is part of 'Chemistry for All' - a Chemistry Education project by our Charity Fuse Foundation - the organisation behind The Fuse School. These videos can be used in a flipped classroom model or as a revision aid. Find our other Chemistry videos here: https://www.youtube.com/playlist?list=PLW0gavSzhMlReKGMVfUt6YuNQsO0bqSMV Twitter: https://twitter.com/fuseSchool Access a deeper Learning Experience in the Fuse School platform and app: www.fuseschool.org Follow us: http://www.youtube.com/fuseschool Friend us: http://www.facebook.com/fuseschool This Open Educational Resource is free of charge, under a Creative Commons License: Attribution-NonCommercial CC BY-NC ( View License Deed: http://creativecommons.org/licenses/by-nc/4.0/ ). You are allowed to download the video for nonprofit, educational use. If you would like to modify the video, please contact us: [email protected]
How to Draw Covalent Bonding Molecules
 
09:17
http://www.sciencetutorial4u.com This video explains how to draw covalent molecules and compounds. Contents: 0:08 Introduction 0:39 H2 1:25 HCl 2:23 Cl2 3:18 CH4 4:27 NH3 5:37 H2O 6:52 O2 7:57 N2 Thank you for watching. Please like, subscribe and share this video: https://youtu.be/_v8C1W0ChVM INTRODUCTION 0:08 Covalent bonding happens between non-metals. The electrons are shared between the non-metal atoms. This bonding allow atoms to have full outer shell of electrons. Only the electrons in the outer shell take part in the bonding. The number of electrons in the outer shell can be found out using the group in the periodic table. H2 0:39 Hydrogen is in group 1 so it has one electron in the outer shell. Hydrogen molecules have single bond which means they have two electrons in the overlap. HCl 1:25 Chlorine is in group 7 so it has seven electrons in the outer shell. HCl has single bond so it has two electrons in the overlap. Cl2 2:23 Chlorine is in group 7 so it has seven electrons in the outer shell. Cl2 (Chlorine molecule) has single bond so it has two electrons in the overlap. CH4 3:18 Carbon is in group 4 so it has four electrons in the outer shell. Methane has four single bonds. NH3 4:27 Nitrogen is found in group 5 so it has 5 electrons in the outer-shell. The Nitrogen atom is surrounded by three Hydrogen atoms, each providing one electron in the sharing (overlap). So Ammonia has 3 single bonds. H2O 5:37 Oxygen is found in group 6 so it has 6 electrons in the outer shell. Water has 2 single bonds. O2 6:52 Oxygen molecules have double bonds. Oxygen atom is found in group 6 so it has 6 electron in the outer shell. Therefore, in the overlap there are 2 pairs of electrons (which is 4 electrons in the overlap). This leads O2 molecules to have one double bond. N2 7:57 Nitrogen molecules have triple bonds. Nitrogen is found in group 5 so it has 5 electrons in the outer-shell. In the overlap, there are 3 pairs of electrons which are 6 electrons in the overlap. This causes Nitrogen molecules to have one triple bond. How to draw Ionic Bonds Teaching Video: https://youtu.be/ek-AN5K3AlI Ionic and Covalent bonds Teaching video: https://youtu.be/wQ3NJUKKcTU How to draw electron shell Teaching video: https://youtu.be/vuVNkQwSggo
Views: 69640 sciencetutorial4u
Introduction to Ionic Bonding and Covalent Bonding
 
12:50
This crash course chemistry video tutorial explains the main concepts between ionic bonds found in ionic compounds and polar & nonpolar covalent bonding found in molecular compounds. This video contains plenty of notes, examples, and practice problems. Here is a list of topics: 1. Ionic Bonds - Transfer of Valence Electrons 2. Electrostatic Force of Attraction In Ionic Bonding 3. Ionic Compounds - Metals and Nonmetals 4. Molecular Compounds - 2 or More Nonmetals 5. Polar Covalent Bonding - Unequal Sharing of Electrons 6. Nonpolar Covalent Bonds - Equal Sharing of Electrons 7. Polarized Compounds - Dipole Moment and Charge Separation 8. Electronegativity and Charge Distribution 9. Metal Cations vs Nonmetal Anions
Carbon and its Compounds | Bonding in Carbon | Covalent Bonds
 
05:32
CBSE Class 10 Science - Carbon and its Compounds - What is covalent bonding and why Carbon shares electrons? What are Electrovalent and Covalent compounds and difference between them? Atoms can share, gain or Loose electrons to stable their Octates. So the compounds formed by gain or loss of electrons is called as the electrovalent compound and covalent compounds are formed by sharing of electrons. Carbon has an atomic number of 6 and its electronic configuration will be 2 and 4. So to be stale carbon has to either loss 4 electrons or gain 4 electrons. So the carbon shares the electrons with other atoms. So Covalent bonding is mutual sharing of electrons so as to achieve a stable electronic configuration. Hence carbon has co-valency of 4 and will be tetravalent. About PrepOngo: Best Online Learning App which provides CBSE class 10 interactive video lectures, NCERT solutions, written study material, solved examples, in chapter quizzes and practice problems for Science (Physics, Chemistry, Biology) and Mathematics. We try to help the students understand lessons by visualising the concepts through illustrative and interactive videos, practice from large question banks and evaluate and improve yourself continuously. Online Live courses are also offered for CBSE boards, JEE Mains, JEE-Advanced, NEET and Board preparation for class 10, 11 and 12 For all CBSE class 10 Science and Maths video lectures download the Android App: https://goo.gl/HJwkhw Subscribe to our YouTube Channel: https://goo.gl/KSsWP2
Views: 52594 PrepOnGo
Ionic Bond | #aumsum
 
04:59
Ionic bond is the transfer of electrons from a metallic atom to a non-metallic atom. Sodium Chloride: Oppositely charged sodium and chloride ions are held by a strong electrostatic force of attraction known as Ionic Bond.
Views: 1214775 It's AumSum Time
Oxygen, Nitrogen & Carbon and Covalent Chemical Bonds
 
17:51
This chemistry tutorial video explains how oxygen, nitrogen & carbon make covalent chemical bonds to school & science students . The video shows how the protons and electron shells, and especially the number of electrons in the outer shells determine how many bonds oxygen, nitrogen and carbon can make. Four important molecules, water H2O, ammonia NH3, and methane CH4 are discussed. Subscribe to watch more online chemistry courses & science videos: http://www.youtube.com/channel/UCiX8pAYWBppIbtUZTfGnRJw?sub_confirmation=1 About Atomic School: Atomic School supports the teaching of Atomic Theory to primary school & science students . We provide lesson plans, hands-on classroom resources, demonstration equipment, quizzes and a Teacher's Manual to primary school teachers. Animated videos that clearly explain the scientific ideas supports learning by both teachers and students. As a teacher, you don't have to look anywhere else to implement this program. Our work has been verified by science education researchers at the University of Southern Queensland, Dr Jenny Donovan and Dr Carole Haeusler, who confirm that primary students are capable of learning much more complex scientific concepts than previously thought, and crucially, that they love it. Students run to class! The program has been trialed in Australian schools as well as schools in the Philippines, Iran and India. It is conducted as holiday workshops at the Australian Nuclear Science and Technology Organisation, the Queensland Museum as well as the World Science Festival. It has attracted wide media interest, including TV, radio and print, and the research data has been presented at prestigious American Education Research Association and Australian Science Education Research Association conferences. Atomic Theory underlies all the other sciences- genetics, electronics, nanotechnology, engineering and astronomy- so an early understanding will set them up for a more successful learning sequence for all their science subjects, and support their mastery of mathematics as well. We also have extension programs that cover Biology, Physics and Astronomy to an equal depth. About Ian Stuart (Email: [email protected]): The founder of Atomic School, Ian Stuart, taught Chemistry and Physics for 25 years at senior levels before he realized that his 8-year old son, Tom, could understand Atomic Theory at a much deeper level than he expected. After visiting Tom's class at school, he discovered that his peers could also grasp the abstract scientific concepts, as well as apply it usefully to the real world. Ian then developed a program to teach the advanced concepts of high school Chemistry, Physics and Biology to students 10 years younger than they normally would. He found that this engaged their interest in modern science early, and sustained it through to high school and beyond. It also sets them up for future success in their academic and career paths. Ian has a Bachelor's Degree in Chemistry from the University of Queensland and a Master's degree in Electrochemistry from the University of Melbourne. Connect with Atomic School on social media: http://facebook.com/AtomicSchool http://twitter.com/AtomicSchools http://instagram.com/AtomicSchools Video transcript:
Views: 148700 AtomicSchool
Lewis Diagrams Made Easy: How to Draw Lewis Dot Structures
 
07:27
For a limited time get 10% off all my Teespring Merch. Use the promo code: KETZ10 Please consider supporting me on Patreon: https://www.patreon.com/ketzbook This is a Videoscribe tutorial on how to draw Lewis diagrams for elements and simple molecules. Lewis diagrams (aka Lewis structures, Lewis dot structures, Lewis dot diagrams) are useful because they use simple drawings to show how atoms share valence electrons in molecules, polyatomic ions, and other covalent structures. This is my first tutorial in the series. Please also see the second video in my Lewis diagram series: https://youtu.be/qwqXAlvNxsU For simple molecules, follow these 5 steps: 1) count all the valence electrons 2) put the singular atom in the middle 3) draw in single bonds 4) put remaining electrons in as lone pairs 5) give every atom an octet or duet by turning lone pairs into double or triple bonds as needed My goal is to make chemistry easier ;) http://ketzbook.com
Views: 1005668 ketzbook
How Molecules are formed ? - Animated Lesson for kids
 
01:46
Visit http://www.makemegenius.com for more free science videos for kids. A simple animated video lesson for kids on how & why atoms form molecules. How the bonding happens & how valence electrons play a role in formation of molecules.
Views: 124157 makemegenius
Chemical Bonding | Covalent Bond | Ionic Bonding | Class 11 Chemistry
 
05:27
A chemical bond is a lasting attraction between atoms, ions or molecules that enables the formation of chemical compounds. The bond may result from the electrostatic force of attraction between oppositely charged ions as in ionic bonds or through the sharing of electrons as in covalent bonds.
Views: 11486 Creative Learning
Ionic Bonding Introduction
 
07:20
To see all my Chemistry videos, check out http://socratic.org/chemistry This video is an introduction to ionic bonding, which is one type of chemical bonding. Ionic bonds hold together metal and nonmetal atoms. In ionic bonding, electrons are transferred from a metal atom to a nonmetal atom, creating ions. These ions have opposite charge, so they stick together. Creative Commons Attribution-NonCommercial CC BY-NC
Views: 1071870 Tyler DeWitt
The Chemical Bond: Covalent vs. Ionic and Polar vs. Nonpolar
 
03:33
Ionic Bond, Covalent Bond, James Bond, so many bonds! What dictates which kind of bond will form? Electronegativity values, of course. Let's go through each type and what they're all about. To support this channel and keep up on STEM news at the same time, click on the link below and subscribe to this FREE newsletter: http://www.jdoqocy.com/click-9021241-13591026 Subscribe: http://bit.ly/ProfDaveSubscribe [email protected] http://patreon.com/ProfessorDaveExplains http://professordaveexplains.com http://facebook.com/ProfessorDaveExpl... http://twitter.com/DaveExplains General Chemistry Tutorials: http://bit.ly/ProfDaveGenChem Organic Chemistry Tutorials: http://bit.ly/ProfDaveOrgChem Biochemistry Tutorials: http://bit.ly/ProfDaveBiochem Classical Physics Tutorials: http://bit.ly/ProfDavePhysics1 Modern Physics Tutorials: http://bit.ly/ProfDavePhysics2 Mathematics Tutorials: http://bit.ly/ProfDaveMaths Biology Tutorials: http://bit.ly/ProfDaveBio American History Tutorials: http://bit.ly/ProfDaveAmericanHistory
Views: 283630 Professor Dave Explains
What is a Coordinate Covalent Bond?
 
04:40
This chemistry video tutorial provides a basic introduction into coordinate covalent bond. Line any covalent bond, electrons are shared. However, in a coordinate covalent bond, one atom donates both electrons that contribute to the formation of the bond. A lewis acid lewis base reaction can form a coordinate covalent bond as well as metal ligand interactions. New Chemistry Video Playlist: https://www.youtube.com/watch?v=bka20Q9TN6M&t=25s&list=PL0o_zxa4K1BWziAvOKdqsMFSB_MyyLAqS&index=1 Access to Premium Videos: https://www.patreon.com/MathScienceTutor Facebook: https://www.facebook.com/MathScienceTutoring/
4.2 Describe how the covalent bond is formed via electron sharing [SL IB Chemistry]
 
04:42
Atoms may share electrons to obtain a full outer shell with other atoms. The resulting molecules are more stable. Atoms may share one electron each = covalent bond. Sharing 2 each is a double bond, 3 each is a triple bond. If one atom shares 2 electrons and the other shares none that is called a dative (or coordinate) covalent bond. The hydronium ion, ammonium ion and carbon monoxide all contain a dative covalent bond. Pyro's arm grew back at respawn!
Views: 55298 Richard Thornley
Why Do Atoms Bond?
 
02:24
SciShow explains what makes atoms bond (and what makes them sometimes seem promiscuous). Hosted by: Michael Aranda ---------- Like SciShow? Want to help support us, and also get things to put on your walls, cover your torso and hold your liquids? Check out our awesome products over at DFTBA Records: http://dftba.com/scishow Or help support us by subscribing to our page on Subbable: https://subbable.com/scishow ---------- Looking for SciShow elsewhere on the internet? Facebook: http://www.facebook.com/scishow Twitter: http://www.twitter.com/scishow Tumblr: http://scishow.tumblr.com Thanks Tank Tumblr: http://thankstank.tumblr.com Sources:
Views: 389556 SciShow
Types Of Chemical Bonds - What Are Chemical Bonds - Covalent Bonds And Ionic Bonds - What Are Ions
 
04:18
In this video we discuss how chemical bonds are formed, we cover ionic bonds and covalent bonds. Chemical bonding is important in many different functions of the body. Transcript and notes The interactions of 2 or more atoms mainly occur at the outermost shell, or energy level. The result of these interactions results in a chemical reaction. In atoms that have fewer or more than 8 electrons in their outermost energy level, reactions occur that result in the loss, gain, or sharing of electrons with another atom to satisfy the octet rule. The octet rule means that elements tend to combine so that each atom has 8 electrons in its outermost shell. This results in the formation of structures such as crystals or molecules. Two atoms of oxygen can combine with one atom of carbon to form carbon dioxide or CO2. There are two main types of chemical bonds, ionic bonds and covalent bonds. Ionic bonds are bonds where the transfer of electrons takes place. Let’s see how this type of bond works. So, here we have a sodium atom, which has an atomic number of 11, meaning it has 11 protons in its nucleus and 11 electrons in its shells or energy levels. Shell one has 2 electrons, shell 2 has 8 electrons and shell 3 has 1 electron. And here we have a chlorine atom, which has an atomic number of 17, so 17 protons and 17 electrons. It has 2 electrons in shell one, 8 in shell 2 and 7 in shell 3. We know that atoms want to have 8 electrons in their outer shell, so Sodium can give up one electron, and now it has 8 electrons in its outer shell, and chlorine can take that electron from sodium and that will give it 8 electrons in its outer shell. Since the sodium atom gave up an electron it now has 11 protons, which are positively charged, and 10 electrons which are negatively charged. This results in the formation of a sodium ion with a positive charge. An ion is an atom or molecule with a net electrical charge due to the loss or gain of an electron. Since the chlorine atom gained an electron, and now has 17 protons and 18 electrons, it is a chlorine ion with a negative charge. The positively charged sodium ion is now attracted to the negatively charged chlorine ion, and NaCl or table salt is formed. This is an ionic bond. So, ionic bonding is when an electron transfer takes place and generates 2 oppositely charged ions. Now for covalent bonds. Covalent bonds are chemical bonds that are formed by the sharing of one or more pairs of electrons by the outer energy levels or shells of two atoms. The 4 major elements of the body, carbon, oxygen, hydrogen and nitrogen almost always form covalent bonds by sharing electrons. So, for instance, 2 hydrogen atoms can bond by sharing a pair of electrons. Hydrogen is one of the exceptions to the octet rule of having 8 electrons in the outer shell, because it only has one shell. Let’s look at carbon dioxide or co2 again, which form a covalent bond. Oxygen has an atomic mass of 8, so 8 protons, and 8 electrons, 2 in its inner shell and 6 in its outer shell, so, oxygen atoms want 2 more electrons for their outer shell. Carbon has an atomic mass of 6, 6 protons and 6 electrons, 2 in the inner shell and 4 in the outer shell, so it wants 4 more electrons for its outer shell. They can make each other happy by sharing what they have. Oxygen atom number 1 can share 2 of its electrons and the carbon atom can share 2 of its electrons with oxygen atom number one, making oxygen atom number one happy. And oxygen atom number 2 can come in and like oxygen atom number one it can share two of its electrons and the carbon atom has 2 more of its own electrons that it can share with oxygen atom number 2. So now all 3 atoms are happy. By sharing 2 pairs of electrons in this situation a double bond has been formed, and double bonds are important in chemical reactions.
Views: 5477 Whats Up Dude
Covalent Bond Formation
 
00:46
Here is a clip showing a covalent bond forming between two hydrogen atoms. Note the length and strength from the graph.
Views: 14125 mtchemers
How Do Atoms Bond - Part 2 | Chemistry for All | FuseSchool
 
05:51
Learn the basics about how atoms bond when learning about the structure of atoms. Bonds form by the attraction of negatively charged electrons and the positive nucleus of atoms. Atoms have a positively charged tiny nucleus which contains almost all the atom’s mass, surrounded by shells of negatively charged electrons. Each shell is able to hold only up to a fixed number of electrons when it is said to be full. Hydrogen has a single positive charge in the nucleus and a single electron. If two hydrogen atoms approach each other, there is an attraction: the positive charge and the negative electron charge attract. However the first shell, for all atoms, can only contain two electrons so once the two Hydrogen atoms come together the two electrons essentially ‘fill’ the outer shell of both Hydrogen atoms. The atoms are essentially ‘glued’ together by the attraction of the two electrons and the two nuclei. The same form of electron share bonding occurs between any non-metallic elements, with the outer shell quickly becoming full, limiting the number of bonds that form. When there are four electrons in the outer shell, such as with carbon and silicon there is room for four more electrons so 4 bonds form. In this case it is possible to build up a 3-D structure with the bonding going on forever. In this way we see that carbon and silicon, as elements, have atoms chemically bonded into a 3D lattice so they are both solids at room temperature and very difficult to melt and vaporise. They are giant covalent structures. Metallic bonding is the way all metals and alloys are bonded, and explains the typical properties of metals. Atoms can be added as much as you want and there will never be enough electrons to fill the outer shell. So in metallic bonding, the atoms form a closely packed lattice where the atoms are not bonded by fixed pairs of electrons, but rather by a ‘sea’ of electrons roaming these partially filled outer shells at will. When two different atoms approach each other, covalent bonds can form. The number of electrons that are shared depends upon how many electrons are missing from the outer shells of the atoms. Overall, in this video you will learn how two atoms which approach each other have the possibility to bond if there is space in their outer electron shells. Non-metallic elements will tend to form self contained small molecules giving rise to volatile solids, liquids and all gases. Carbon and silicon will give rise to giant structures. Metallic elements will bond together to form metallic structures with loose electrons. When metal bonds with a non-metal ionic compounds are formed. SUBSCRIBE to the Fuse School YouTube channel for many more educational videos. Our teachers and animators come together to make fun & easy-to-understand videos in Chemistry, Biology, Physics, Maths & ICT. JOIN our platform at www.fuseschool.org This video is part of 'Chemistry for All' - a Chemistry Education project by our Charity Fuse Foundation - the organisation behind FuseSchool. These videos can be used in a flipped classroom model or as a revision aid. Find our other Chemistry videos here: https://www.youtube.com/playlist?list=PLW0gavSzhMlReKGMVfUt6YuNQsO0bqSMV Twitter: https://twitter.com/fuseSchool Access a deeper Learning Experience in the Fuse School platform and app: www.fuseschool.org Follow us: http://www.youtube.com/fuseschool Friend us: http://www.facebook.com/fuseschool This Open Educational Resource is free of charge, under a Creative Commons License: Attribution-NonCommercial CC BY-NC ( View License Deed: http://creativecommons.org/licenses/by-nc/4.0/ ). You are allowed to download the video for nonprofit, educational use. If you would like to modify the video, please contact us: [email protected]
How Do Atoms Bond | Chemistry for All | FuseSchool
 
03:33
Learn the basics about how atoms bond when learning about the structure of atoms. Bonds form by the attraction of negatively charged electrons and the positive nucleus of atoms. Atoms have a positively charged tiny nucleus which contains almost all the atom’s mass, surrounded by shells of negatively charged electrons. Each shell is able to hold only up to a fixed number of electrons when it is said to be full. Hydrogen has a single positive charge in the nucleus and a single electron. If two hydrogen atoms approach each other, there is an attraction: the positive charge and the negative electron charge attract. However the first shell, for all atoms, can only contain two electrons so once the two Hydrogen atoms come together the two electrons essentially ‘fill’ the outer shell of both Hydrogen atoms. The atoms are essentially ‘glued’ together by the attraction of the two electrons and the two nuclei. The same form of electron share bonding occurs between any non-metallic elements, with the outer shell quickly becoming full, limiting the number of bonds that form. When there are four electrons in the outer shell, such as with carbon and silicon there is room for four more electrons so 4 bonds form. In this case it is possible to build up a 3-D structure with the bonding going on forever. In this way we see that carbon and silicon, as elements, have atoms chemically bonded into a 3D lattice so they are both solids at room temperature and very difficult to melt and vaporise. They are giant covalent structures. Metallic bonding is the way all metals and alloys are bonded, and explains the typical properties of metals. Atoms can be added as much as you want and there will never be enough electrons to fill the outer shell. So in metallic bonding, the atoms form a closely packed lattice where the atoms are not bonded by fixed pairs of electrons, but rather by a ‘sea’ of electrons roaming these partially filled outer shells at will. When two different atoms approach each other, covalent bonds can form. The number of electrons that are shared depends upon how many electrons are missing from the outer shells of the atoms. Overall, in this video you will learn how two atoms which approach each other have the possibility to bond if there is space in their outer electron shells. Non-metallic elements will tend to form self contained small molecules giving rise to volatile solids, liquids and all gases. Carbon and silicon will give rise to giant structures. Metallic elements will bond together to form metallic structures with loose electrons. When metal bonds with a non-metal ionic compounds are formed. SUBSCRIBE to the Fuse School YouTube channel for many more educational videos. Our teachers and animators come together to make fun & easy-to-understand videos in Chemistry, Biology, Physics, Maths & ICT. JOIN our platform at www.fuseschool.org This video is part of 'Chemistry for All' - a Chemistry Education project by our Charity Fuse Foundation - the organisation behind FuseSchool. These videos can be used in a flipped classroom model or as a revision aid. Find our other Chemistry videos here: https://www.youtube.com/playlist?list=PLW0gavSzhMlReKGMVfUt6YuNQsO0bqSMV Twitter: https://twitter.com/fuseSchool Access a deeper Learning Experience in the Fuse School platform and app: www.fuseschool.org Follow us: http://www.youtube.com/fuseschool Friend us: http://www.facebook.com/fuseschool This Open Educational Resource is free of charge, under a Creative Commons License: Attribution-NonCommercial CC BY-NC ( View License Deed: http://creativecommons.org/licenses/by-nc/4.0/ ). You are allowed to download the video for nonprofit, educational use. If you would like to modify the video, please contact us: [email protected]
Covalent Bonding in Carbon Dioxide | Chemistry for All | FuseSchool
 
03:54
Carbon dioxide is a product of one of the most important chemical reactions in the world: combustion. Combustion is how a lot of people in the world heat their homes and power their cars. It also unfortunately contributes to the greenhouse effect and global warming. The carbon dioxide molecule is formed from one carbon atom and two oxygens. As an element, carbon only has 4 outer shell electrons and oxygen 6. Double covalent bonds form between the atoms, where two electrons from each atom are shared making 4 bonding electrons in total. The two groups of bonding electrons in carbon dioxide repel each other and this keeps the oxygen atoms as far away from each other as possible. Carbon dioxide is less reactive than water because it has two bonds with each oxygen. This means you need a lot more energy to break the atoms apart. Carbon dioxide's strong double bonds make it very stable and so whenever there are stray carbon and oxygen atoms flying about, they love to get together and form carbon dioxide. Like water, the bonds in carbon dioxide are POLAR COVALENT, making the carbon atom delta positive and the oxygens delta negative. Although, unlike water, carbon dioxide is not a polar molecule overall. SUBSCRIBE to the FuseSchool YouTube channel for many more educational videos. Our teachers and animators come together to make fun & easy-to-understand videos in Chemistry, Biology, Physics, Maths & ICT. VISIT us at www.fuseschool.org, where all of our videos are carefully organised into topics and specific orders, and to see what else we have on offer. Comment, like and share with other learners. You can both ask and answer questions, and teachers will get back to you. These videos can be used in a flipped classroom model or as a revision aid. Find all of our Chemistry videos here: https://www.youtube.com/watch?v=cRnpKjHpFyg&list=PLW0gavSzhMlReKGMVfUt6YuNQsO0bqSMV Find all of our Biology videos here: https://www.youtube.com/watch?v=tjkHzEVcyrE&list=PLW0gavSzhMlQYSpKryVcEr3ERup5SxHl0 Find all of our Maths videos here: https://www.youtube.com/watch?v=hJq_cdz_L00&list=PLW0gavSzhMlTyWKCgW1616v3fIywogoZQ Twitter: https://twitter.com/fuseSchool Access a deeper Learning Experience in the FuseSchool platform and app: www.fuseschool.org Follow us: http://www.youtube.com/fuseschool Friend us: http://www.facebook.com/fuseschool This Open Educational Resource is free of charge, under a Creative Commons License: Attribution-NonCommercial CC BY-NC ( View License Deed: http://creativecommons.org/licenses/by-nc/4.0/ ). You are allowed to download the video for nonprofit, educational use. If you would like to modify the video, please contact us: [email protected]
How Ionic Bonds Form (Basic)
 
07:48
A basic description of the transfer of an electron between sodium and chlorine forming the sodium chloride ionic compound.
Views: 40700 BioBunn
BONDING IN CARBON THE  COVALENT BOND
 
04:20
For accessing 7Activestudio videos on mobile Download SCIENCETUTS App to Access 120+ hours of Free digital content. For more information: http://www.7activestudio.com [email protected] http://www.7activemedical.com/ [email protected] http://www.sciencetuts.com/ Contact: +91- 9700061777, 040-64501777 / 65864777 7 Active Technology Solutions Pvt.Ltd. is an educational 3D digital content provider for K-12. We also customise the content as per your requirement for companies platform providers colleges etc . 7 Active driving force "The Joy of Happy Learning" -- is what makes difference from other digital content providers. We consider Student needs, Lecturer needs and College needs in designing the 3D & 2D Animated Video Lectures. We are carrying a huge 3D Digital Library ready to use. Carbon–carbon bond. A carbon–carbon bond is a covalent bond between two carbon atoms. The most common form is the single bond: a bond composed of two electrons, one from each of the two atoms. ... Carbon atoms can also form double bonds in compounds called alkenes or triple bonds in compounds called alkynes.
Views: 10231 7activestudio
Types of Bond: Ionic, Covalent, Coordinate, and Hydrogen Bonds
 
02:42
Types of Bond in chemistry are explained in this video. The explanation of chemical bonding and different types of chemical bonds that are explained in this video include ionic bonds, covalent bonds, coordinate bonds, and hydrogen bonds. Ionic Bond: Ionic bonding is seen when two atoms form a bond by donating or accepting electrons. In this type of chemical bonding, there is an electrostatic attraction between the ions which are oppositely charged. Covalent Bond: In covalent bonding, two atoms share electrons to be able to attain the configuration of their nearest noble gas. It is also called a molecular bond and is characterized by electrons sharing between atoms. Coordinate bond: In the case of coordinate bonding, both the electrons that form the bond come from the same atom. Coordinate bond is also known as a coordinate covalent bond or a dative covalent bond. Hydrogen Bond: Hydrogen bonding is a type of electrostatic attraction and is seen when a hydrogen atom which is bonded to a highly electronegative atom (like Nitrogen, Oxygen, Fluorine) comes close to another adjacent atom having a lone pair of electrons. Get more information about the types of bond here- https://byjus.com/chemistry/ionic-covalent-and-coordinate-bond/ Thank you for watching. If you liked this video, please subscribe to our channel and press the like button. Click on the bell icon to turn on notifications and you will never miss out on our latest videos! Explore more content like this on our channel. Still have a doubt about this topic? Or Have an idea/ suggestion for a new video? Please comment below.
Views: 29167 BYJU'S
Covalent Bonding (Part 1/3) -  Formation of Covalent Bonds
 
06:23
Covalent bonds form when non-metals share electrons to obtain a full outer shell. Each pair of shared electrons represents one covalent bond with atoms able to form single, double and triple covalent bonds. Electrons not forming covalent bonds are called non-bonding or lone pairs.
Views: 11543 VolkScience
Ionic and Covalent Bonds Made Easy
 
05:05
Simple explanation of Ionic and Covalent Bonds music from bensound.com sunny day from soundbible.com wind from soundbible.com
Views: 92050 Got Science?
Covalent bonds
 
02:40
SPM - Chemistry - Form 4 Chapter 5: Chemical Bonds 5.3 Formation of covalent bond
Views: 2143 SPM Malaysia IPTV
Covalent Bonding in Water, Methane, Ammonia & Hydrogen Fluoride | Chemistry for All | FuseSchool
 
05:16
In this video we will look at covalent bonds in methane, ammonia, water and hydrogen fluoride. They are small, covalently-bonded molecules. The atoms within them share electrons because they have half full or more than half full valence shells of electrons: they are non-metals. Methane is a fuel, ammonia is used in household cleaners, water is a drink and the essence of life, and hydrogen fluoride is used to etch glass. The bonding in methane, ammonia, water and hydrogen fluoride shows a pattern: methane is carbon bonded to four hydrogen atoms; ammonia is nitrogen bonded to three hydrogen atoms; water is oxygen bonded to two hydrogen atoms, and hydrogen fluoride is fluorine bonded to just one hydrogen atom. Carbon, nitrogen, oxygen and fluorine appear in the periodic table in this order, moving along the second row from left to right. Carbon has four out of eight electrons in its outer shell, so makes four covalent bonds. Nitrogen has five out of eight electrons in its outer shell, so can make three covalent bonds to make the shell full. Oxygen has 6 electrons in its outer shell. It can bond with two hydrogen atoms to share 2 more electrons. It now has a full outer shell of 8 electrons. Ammonia has two electrons, called a lone pair of electrons, occupying the fourth position. These electrons take up space. Because electrons are negatively charged, lone pairs repel bonds even more strongly than bonds repel each other. This makes ammonia less symmetric than methane. The water molecule is bent in shape. Oxygen has two lone pairs. Negatively charged lone pairs are slightly attracted to the hydrogen atoms, so there is a weak attraction between molecules. Forces between molecules are a little stronger in water than in ammonia or methane. Water is liquid at room temperature and pressure, whilst ammonia a gas that is easily liquefied, and methane is a gas. Intermolecular forces are normally very weak in covalent compounds, but in water they are just strong enough to keep it liquid. A bit more energy is needed to overcome these forces and boil it. If water were not a liquid, life as we know it would be completely different! Ethanol contains carbon and oxygen bonding. The carbon atoms always form four bonds and the oxygen forms two. Remember, carbon forms 4 bonds, nitrogen forms 3 bonds and has one lone pair of electrons, and oxygen forms two bonds and looks bent. SUBSCRIBE to the Fuse School YouTube channel for many more educational videos. Our teachers and animators come together to make fun & easy-to-understand videos in Chemistry, Biology, Physics, Maths & ICT. JOIN our platform at www.fuseschool.org This video is part of 'Chemistry for All' - a Chemistry Education project by our Charity Fuse Foundation - the organisation behind FuseSchool. These videos can be used in a flipped classroom model or as a revision aid. Find our other Chemistry videos here: https://www.youtube.com/playlist?list=PLW0gavSzhMlReKGMVfUt6YuNQsO0bqSMV Twitter: https://twitter.com/fuseSchool Access a deeper Learning Experience in the Fuse School platform and app: www.fuseschool.org Follow us: http://www.youtube.com/fuseschool Friend us: http://www.facebook.com/fuseschool This Open Educational Resource is free of charge, under a Creative Commons License: Attribution-NonCommercial CC BY-NC ( View License Deed: http://creativecommons.org/licenses/by-nc/4.0/ ). You are allowed to download the video for nonprofit, educational use. If you would like to modify the video, please contact us: [email protected]
Covalent Bond
 
11:01
DeltaStep is a social initiative by graduates of IIM-Ahmedabad, IIM-Bangalore, IIT-Kharagpur, ISI-Kolkata, Columbia University (USA), NTU (Singapore) and other leading institutes. At DeltaStep, we understand that just like every child has a unique face, a unique fingerprint; he has a unique learning ability as well. Hence we have built an intelligent adaptive learning system that delivers a tailor-made learning solution and helps a student to learn at his own pace because when it comes to learning, one size does not fit all. Learn from 1000s of such interesting videos, practice from more than 1,00,000 questions, learn complex concepts through games, take timed tests, get detailed reports & in-depth analysis even via SMS and Whatsapp and many more amazing features. Class wise mapping available for all leading boards including ICSE and CBSE. Create your personal learning account. Register for FREE at www.deltastep.com.
Views: 95291 DeltaStep
Bonds formed by Carbon - CBSE 10
 
05:13
Carbon forms Covalent Bonds with a variety of Elements. But which type of Covalent bond does it form? Is it a Single, a Double or a Triple Covalent Bond? Watch this video to get introduced to the Bond Formations of Carbon. To access all videos related to Chemistry of Carbon compounds for free, visit our website here: https://DontMemorise.com/course/index.php?categoryid=54 Don’t Memorise brings learning to life through its captivating FREE educational videos. To Know More, visit https://DontMemorise.com New videos every week. To stay updated, subscribe to our YouTube channel : http://bit.ly/DontMemoriseYouTube Register on our website to gain access to all videos and quizzes: http://bit.ly/DontMemoriseRegister Subscribe to our Newsletter: http://bit.ly/DontMemoriseNewsLetter Join us on Facebook: http://bit.ly/DontMemoriseFacebook Follow us on Twitter: https://twitter.com/dontmemorise Follow us : http://bit.ly/DontMemoriseBlog
Views: 17036 Don't Memorise
Formation of the covalent bond in a chlorine molecule (Cl2).
 
00:31
This brief animation shows how two chlorine atoms make a covalent bond in forming a chlorine molecule (Cl2).
Views: 9178 FranklyChemistry
Valence electrons and bonding | Periodic table | Chemistry | Khan Academy
 
10:57
How to get Lewis structures from electron configuration, and how valence electrons are involved in forming bonds. Created by Jay. Watch the next lesson: https://www.khanacademy.org/science/chemistry/periodic-table/periodic-table-trends-bonding/v/atomic-radius-trend?utm_source=YT&utm_medium=Desc&utm_campaign=chemistry Missed the previous lesson? https://www.khanacademy.org/science/chemistry/periodic-table/copy-of-periodic-table-of-elements/v/periodic-table-transition-metals?utm_source=YT&utm_medium=Desc&utm_campaign=chemistry Chemistry on Khan Academy: Did you know that everything is made out of chemicals? Chemistry is the study of matter: its composition, properties, and reactivity. This material roughly covers a first-year high school or college course, and a good understanding of algebra is helpful. About Khan Academy: Khan Academy offers practice exercises, instructional videos, and a personalized learning dashboard that empower learners to study at their own pace in and outside of the classroom. We tackle math, science, computer programming, history, art history, economics, and more. Our math missions guide learners from kindergarten to calculus using state-of-the-art, adaptive technology that identifies strengths and learning gaps. We've also partnered with institutions like NASA, The Museum of Modern Art, The California Academy of Sciences, and MIT to offer specialized content. For free. For everyone. Forever. #YouCanLearnAnything Subscribe to Khan Academy’s Chemistry channel: https://www.youtube.com/channel/UCyEot66LrwWFEMONvrIBh3A?sub_confirmation=1 Subscribe to Khan Academy: https://www.youtube.com/subscription_center?add_user=khanacademy
Views: 472893 Khan Academy
Understanding Overlapping Atomic Orbitals
 
02:21
How would an s orbital combine with a p orbital to form a covalent bond? The answer is through hybridization where a hybrid oribital is formed. A sigma bond is formed by the direct end to end overlapping of atomic orbitals. Watch more of this topic at ► http://bit.ly/1Yy1FLG Download this PDF: http://bit.ly/1Yy0uvU GET MORE CLUTCH! VISIT our website for more of the help you need: http://bit.ly/1ZWNHlw SUBSCRIBE for new videos: http://cltch.us/1axA33X --- LET'S CONNECT! Facebook: http://cltch.us/1JLgiSZ Twitter: http://cltch.us/1NLcKpu Instagram: http://cltch.us/1If5pb7 Google+: http://cltch.us/1E34o85 Clutch Prep = Textbook specific videos to help you pass your toughest science classes.
Views: 35509 Clutch Prep
Polar Covalent Bonds
 
04:58
Polar covalent bonds result from eneven sharing of electrons. Learn how to predict if a bond will be polar or nonpolar in this video.
Views: 155992 The Science Classroom
Double and Triple  Covalent Bonds
 
02:52
Learn how electrons are formed in a double and triple bond.
Views: 39597 The Science Classroom
Hydrogen Bonds - What Are Hydrogen Bonds - How Do Hydrogen Bonds Form
 
02:48
In this video we discuss hydrogen bonds. We cover how do hydrogen bonds form, the different elements that take part in hydrogen bonds, and why doesn't oil and water mix. What are hydrogen bonds? An attractive force called a hydrogen bond can exist between certain molecules. These bonds are weaker than ionic or covalent bonds, because it takes less energy to break these types of bonds, however, a large number of these bonds going on can exert a strong force. Hydrogen bonds are the result of an unequal charge distribution on a molecule, these molecules are said to be polar. If we look at a water molecule, we can see the oxygen atom shares electrons with 2 different hydrogen atoms. So, in total this molecule has 10 protons, 8 from oxygen and 1 each from the hydrogen atoms, and a total of 10 electrons, 2 shared between the oxygen atom and hydrogen atom number one, 2 shared between the oxygen atom and hydrogen atom number 2, and the other 6 non shared electrons from the oxygen atom. So, this water molecule is electrically neutral, but it has a partial positive side, the hydrogen side, and a partial negative side, the oxygen side of the molecule. The electrons are not shared equally within the molecule, as they have a higher probability of being found closer to the nucleus of the oxygen atom, giving that end a slightly negative charge. So, the hydrogen atoms end of the molecule will have a slightly positive charge. These charged ends weakly attach the positive end of one water molecule to the negative end of an adjacent water molecule. When water is in liquid form there a few hydrogen bonds, solid form, many bonds, and when water is steam or gas, there are no bonds, because the molecules are too far apart to form any bonds. Hydrogen bonds only form between hydrogen atoms that are covalently bonded, or bonds where electrons are being shared and not transferred, to an oxygen, nitrogen or fluorine atom. These bonds make water ideal for the chemistry of life. Hydrogen bonds are also important in the structure of proteins and nucleic acids, which we will cover in later videos. So, now we know that water molecules are polar, or have slightly positive and slightly negative ends, and in fact, many lipids, or fats and oils, are not polar. So their molecules share electrons equally in their bonds. So, these are nonpolar molecules. This means that when water and oil come together they do not form bonds with one another. Even when we try to mix them, the water molecules will eventually separate because their polar molecules are attracted to one another and will form hydrogen bonds, separating the water and the nonpolar oil molecules.
Views: 99981 Whats Up Dude